Actually, molecular biological mechanisms on this phenomenon have not been elucidated completely.
Annexin A2, a Ca2+-binding protein, has a function in promoting tumor cells invasion and metastasis through its interaction with matrix proteins [14, 15]. Annexin A2 was found down-regulated in Eahy926 cells (Table 1, Figure 6). Reduction of annexin A2 resulted in the weaker invasion and tumorigenesis ability of Eahy926 cells. CK18, CK8 and cathepsin B were involved in cell malignant transformation and the destruction of basement membranes by degrading collagen and laminin, promoting tumor migration [16–19]. These proteins were found up-regulated in Eahy926 cells (Table 1, Figure 6). Therefore, the higher migration ability of Eahy926 cells shown in this study could be accounted for partially at the protein level. However, it was difficult to explain all the biological mTOR inhibitor behaviors only by the proteins founding. For instance, GRP78, as a heat shock protein, was implicated in protecting tumor cells from cytotoxic damage and apoptosis. Over-expressed GRP78 has been correlated with tumor invasion and metastasis in the xenograft nude mouse model [20–22]. Although GRP78 was up-regulated in this study,
Eahy926 cells had the weaker invasion ability than Mizoribine chemical structure A549 cells had and failed to form xenograft tumor in nude mice. There were many factors influencing the cell’s biological behaviors. Several researches suggested that many hybrid cells, derived from fusion of cancer cells with normal cells, had the weaker tumorigenesis [23, 24]. But, hybridoma cells used in producing monoclonal antibodies had stronger tumorigenesis. Additionally, another hybrid cell line, derived from fusion of human cervical carcinoma cells HeLa with human diploid fibroblasts, was also found to be non-tumorigenic completely in vivo [25]. The probable causes lay in transferring of the tumor suppressor gene and the different www.selleck.co.jp/products/Decitabine.html responses to the growth regulatory signals [26, 27]. In the present study, we
investigated malignant biological behaviors and protein expression of hybrid cell line Eahy926 comparatively. Having considered the complex formation process of hybrid cells, further study should be made to explore the complex interactions of tumor cells with endothelial cells. This would not only contribute to the elucidation of the accurate processes of tumor angiogenesis, invasion and metastasis, but also be helpful in screening more molecular targets for the development of novel therapeutic approaches. Conclusion Our study suggested that the proliferation ability of Eahy926 cells was similar to that of A549 cells, but the ability in adhesion and migration of Eahy926 cells was higher. In addition, Eahy926 cells had weaker ability of invasion and could not form tumor mass.