Liquid Watson Reid† 316FUK2001 (Vaccine strain) Obtained as a lyo

Liquid Watson Reid† 316FUK2001 (Vaccine strain) Obtained as a lyophilised stock from the VLA in 2001 and maintained at the Moredun Research Institute, Scotland, UK. 7H11** 316FNLD2008 (Vaccine strain) Obtained from VLA in 2008 and maintained

at the Central Veterinary Institute, Lelystad, I-BET151 manufacturer Netherlands HEYM IIUK2000 (Vaccine strain) Obtained from the VLA in 2000 and maintained at St George’s Hospital Medical School, London, UK. Liquid Watson Reid†[14] IIUK2001 (Vaccine strain) Obtained as a lyophilised stock from the VLA in 2001 and maintained at the Moredun Research Institute, Scotland, UK. 7H11** 2eUK2000 (Vaccine strain) Obtained from the VLA in 2000 and maintained at St George’s Hospital Medical School, London, UK. Liquid Watson Reid ‘A’ Block†† medium 2eUK2001 (Vaccine strain) Obtained as a lyophilised stock from the VLA in

2001 and maintained at the Moredun Research Institute, Scotland, UK. 7H11** MAPK10 (Wild type strain) Purchased from ATCC: BAA-968. Sequenced reference strain isolated from a cow in 1990. 7H9* or 7H11** CAM87 (Wild type strain) MAP Type III strain isolated from a goat in 2005 [26] and maintained at the Universidad Complutense de Madrid, Madrid, Spain. 7H9* JD87/107 (Wild type strain) Isolated from a deer in 1987 and maintained at the Moredun Research Institute, Scotland, UK. 7H11** *7H9: Middlebrooks 7H9 (Becton Dickinson, UK) supplemented with 2 mg/L Mycobactin J (Allied Monitor,

USA), 0.5% glycerol, 10% oleic acid-albumin-dextrose-catalase (OADC) enrichment medium (Difco, UK), 25 mg/L amphotericin buy VX-680 B, 35 mg/L naladixic acid and 35 mg/L vancomycin. **7H11: Middlebrooks 7H11 (Becton Dickinson, UK) agar supplemented with 2 mg/L Mycobactin J (Allied Monitor, USA), 2.5% glycerol (v/v), 10% OADC (v/v) enrichment medium (Difco, UK), 20% (v/v) new born calf serum, 0.3 g/L asparagine, Mycobacteria Selectatabs (10 mg/L amphotericin B, 200,000 units/L polymixin B, 100 mg/L Flavopiridol supplier ticarcillin and 10 mg/L trimethoprim [MAST Laboratories Ltd, UK]). †Liquid Watson Reid: Asparagine 5 g/l, Potassium dihydrogen phosphate 2 g/l, Magnesium suphate 1 g/l, Tri-ammonium citrate 2 g/l, Sodium Thymidylate synthase chloride 2 g/l, D(+) Glucose 10 g/l, Glycerol 48 ml/l, Ammonium iron (III) citrate brown 0.075 g/l, 1.33mls of Supplement A: 2 g/l Zinc sulphate, 2 g/l Copper sulphate, 1 g/l Cobalt nitrate, 1.33mls of Supplement B; 50 g/l Calcium chloride. ††Liquid Watson Reid ‘A’ Block: as Watson Reid medium but without supplements A and B. DNA extraction DNA was extracted for typing and arrays using a previously described protocol [26]. Briefly, 1×109 cells of cultures grown on liquid Middlebrook 7H9 medium for up to 12 weeks were pelleted, washed once in 1x PBS, then resuspended in 650 μl mycobacterial lysis buffer (0.5 M EDTA –pH 8.0-, 5 M NaCl, 1 M TrisHCl, 10% SDS and 8.6 ml H2O).

Natural tocopherol, particularly α-tocopherol, is superior to syn

Selleckchem Peptide 17 natural tocopherol, particularly α-tocopherol, is superior to synthetic forms as a radical chain-breaking antioxidant. The presence of this natural vitamin E in palm oil ensures a longer shelf-life for palm-based food products. By acting as an antioxidant, vitamin E plays an important role in the stabilization of oils and fats (Al-Saqer et al. 2004). Gas chromatographic analysis of peach palm sterols revealed the existence

of several δ-5-sterols (i.e., cholesterol, campesterol, selleckchem stigmastérol, β-sitosterol and δ-5-avenastérol). A HPLC study of tocopherols and tocotrienols showed that alpha tocopherol predominates in the banding patterns (Lubrano et al. 1994). Bereau et al. (2003) reported low levels of antioxidant (vitamin E) levels, more similar to those Volasertib nmr of olive oil than palm oil. Carotenoids

Carotenoids are a group of phytochemicals, which are responsible for different colors of foods (Edge et al. 1997), including the orange to red color of the peach palm fruit mesocarp. Carotenoids are known to possess high anti-oxidant potential, which is considered to play an important role in preventing human diseases (Rao and Rao 2007). Epidemiological studies strongly suggest that consumption of carotenoid-rich foods reduces the incidence of diseases such as cancers and cardiovascular diseases (Ziegler 1989). Diets that are rich in fruits and vegetables, Protein tyrosine phosphatase particularly with cooked products containing oil, offer the health benefits of carotenoids (Perera and Yen 2007). Latin America has a wide variety of carotenogenic foods that are notable for their diversity and high levels of carotenoids, but chemical assays commonly underestimate the antioxidant activity of food carotenoids (Rodriguez-Amaya 1999, 2010). In this respect peach palm can be considered a promising food crop, as its mesocarp is generally rich in β-carotene, though the level varies greatly (Arkcoll and

Aguiar 1984). Furtado et al. (2004) studied carotenoid concentration in vegetables and fruits that are commonly consumed in Costa Rica, reporting values for peach palm of 4.2, 59.1, 93.2, 20.5 and 63.7 μg g−1 for α-carotene, trans-β-carotene, cis-β-carotene, trans-lycopene and cis-lycopene, respectively. Jatunov et al. (2010), using spectrophotometry, found significant differences in the total carotenoid content of six varieties of B. gasipaes from Costa Rica. Blanco and Munoz (1992) found similar carotenoid contents in raw and cooked peach palm and determined nutrient retention after cooking to be greater than 85 %. De Rosso and Mercadante (2007) quantified carotenoids in six Amazonian fruit species commonly sold in the city of Manaus (i.e., Mauritia Vinifera, Mammea Americana, Geoffrola striata, B. gasipaes, Physalis angulata and Astrocaryum aculeatum).

These findings may help us better understand individual variabili

These findings may help us better understand individual variability in health beliefs and medication preferences as Selleckchem Temsirolimus well as which patients are screened, evaluated or treated for OP. P28 ARE PERIODONTAL ENDPOINTS PREDICTIVE OF THE FRAX SCORE IN POSTMENOPAUSAL WOMEN AND VICE VERSA Foluke M. Alli, MD, Cleveland Clinic, Cleveland, OH; Gazabpreet K. Bhandal, DDS, Case

Western Reserve University, Cleveland, OH; Leena Bahl-Palomo, DDS, MSD, Case Western Reserve University, Cleveland, OH; Holly L. Thacker, MD, Cleveland Clinic, Cleveland, OH BACKGROUND: The FRAX score has been used to calculate the risk of fracture in postmenopausal women 50 years or older with low bone mineral density to identify patients at highest risk for fracture who will require treatment. Both periodontitis and osteoporosis constitute significant health problems especially in postmenopausal women. It is thought that these are related as they both affect the bone and many of the same factors which increase risk for osteoporotic fracture are also risk for periodontitis. selleck products As such are these periodontal end points also a predictor? Number of teeth lost, clinical attachment loss, gingival bleeding? AIM: To determine if periodontal endpoints are predictive of the FRAX score in postmenopausal women and vice versa. METHOD: This is a cross-sectional study using participants

in the NHANES data Ureohydrolase set that have periodontal data recorded. Data was obtained on 4207 postmenopausal women who participated in the survey and used to calculate the FRAX score. This was then compared against various periodontal end points such as number of teeth lost, clinical attachment loss and gingival bleeding. RESULT: Increased age was associated with increased osteoporotic fracture risk P < 0.001. As BMI increased, osteoporotic fracture risk decreased P < 0.001. Patients with higher FRAX scores lost more teeth and had larger (free gingival margin) FGM to cement enamel junction (CEJ) measurements

as well as FGM to sulcus base measurements. P < 0.001. Univariable analysis showed that patients that experienced tooth loss tend to be older and have higher FRAX scores. Tooth loss was not associated with BMI P 0.84. This pattern held true for mid- facial loss of attachment and meso-facial loss of attachment. Median attachment loss measurements were higher as FRAX scores increased. But after controlling for age and BMI, FRAX scores were not associated with an increased risk in attachment loss. CONCLUSION: If periodontal end points such as number of teeth lost correlates with FRAX scores, dental professionals are in a position to refer women to women’s health clinics for fracture risk assessment, counseling and prevention and women’s health centers should be referring patients with increased FRAX scores for dental interventions.

These ESTs were assembled in 296 contigs and 1092 singletons, res

These ESTs were assembled in 296 contigs and 1092 singletons, resulting in 1388 unique sequences with a redundancy of 49.3% (Table 1). The majority of the contigs assembled ESTs from a maximum of four libraries, suggesting that these genes are expressed under environmental stress or specific growth conditions. The search results and GenBank submission numbers for each EST are shown in Additional file 1. Analysis of these 1388 unigenes revealed 666 sequences that had no similarity to the sequences in the GenBank dbEST, which contains 37890 T. rubrum sequences. Of the 666 sequences, 404 had no similarities to the sequences

in the nonredundant database (Table 1). Additional analysis revealed that of the 666 sequences, 91 were present STI571 in the TrED database [16]. Thus, 575 novel genes were identified, representing a marked increase in the number of expressed genes Epigenetic Reader Domain inhibitor identified in the dermatophyte T. rubrum. These genes and the corresponding libraries in which they were identified are highlighted in Additional file 2. Table 1 General features of T. rubrum EST

libraries Library GenBank accession No. No. of raw ESTs No. of contigs No. of singletons Unique genes No. of unigenes matching GenBank database (NR)(a) No. of unigenes without match to GenBank dbEST database(b)               matching GenBank database (NR) (c) without match to GenBank database (NR) Total FE524602-FE527336 2735 296 1092 1388 681 (49.1%) 262 (18.9%) 404 (29.1%) 1 FE524602-FE525578 977 75 545 620 235 (37.9%) 73 (11.8%) 207 (33.4%) 2 FE525579-FE525681 103 23 14 37 24 (64.9%) 18 (48.6%) 10 (27.0%) 3 FE525682-FE525782 101 7 76 83 46 (55.4%) 19 (22.9%) 20 (24.1%) 4 FE525783-FE526029 247 64 56 120 62 (51.7%) 31 (25.8%) 36 (30.0%) 5 FE526030-FE526148 119 7 50 57 26 (45.6%) 7 (12.3%) 17 (29.8%) 6 FE526149-FE526246 98 12 5 17 11 (64.7%) 5 (29.4%) 3 (17.6%) 7 FE526247-FE526554 308 36 59 95 69 (72.6%) 25 (26.3%) 17 (17.9%) 8 FE526555-FE526754 200 30 18 48 27 (56.3%) 21 (43.8%) 15 (31.3%) 9 FE526755-FE527126 and FG235008-FG235038 372 43 248 291 162 (55.7%) 53 (18.2%)

74 (25.4%) 10 FE527127-FE527336 210 26 143 169 106 (62.7%) 34 (20.1%) 23 (13.6%) (a) Unigenes with similarity to the sequences in the nonredundant NCBI database (1e-3) using BLASTx. (b) Unigenes with no similarity to the 4-Aminobutyrate aminotransferase sequences in the dbEST-NCBI database (1e-20) using BLASTn-Organism: Trichophyton rubrum (taxid:5551). (c) T. rubrum protein sequences identified in this database were excluded from this analysis. The 1388 unigenes identified in this study were functionally classified based on the Munich Information Center for Protein Sequences (MIPS) categories. The classification led to the identification of Belinostat datasheet putative proteins involved in transcriptional regulation, cellular defense and stress, protein degradation, signaling, transport, and secretion, among other functions (Additional file 2). However, many of these unigenes (54.

Emerg Infect Dis 2011, 17:16–22 PubMedCentralPubMedCrossRef 3 Vo

Emerg Infect Dis 2011, 17:16–22.PubMedCentralPubMedCrossRef 3. Voetsch AC, Van Gilder TJ, Angulo FJ, Farley MM, Shallow S, Marcus R, Cieslak PR, Deneen VC, Tauxe RV: FoodNet estimate of the burden of illness caused by nontyphoidal Salmonella infections in the United States. Clin Infect Dis 2004,38(Suppl 3):S127-S134.PubMedCrossRef 4. CDC: Preliminary FoodNet data on the incidence of infection with pathogens transmitted

commonly through food – 10 states, 2009. MMWR Morb Mortal Wkly Rep 2010, 59:418–422. 5. Dechet AM, Scallan E, Gensheimer K, Hoekstra R, Gunderman-King J, Lockett J, Wrigley D, Chege W, Sobel J: Outbreak of multidrug-resistant Salmonella enterica serotype Typhimurium SAHA HDAC molecular weight Definitive Type 104 infection linked to commercial ground beef, northeastern United States,

2003–2004. Clin Infect Dis BI 10773 in vitro 2006, 42:747–752.PubMedCrossRef 6. Jordan E, Egan J, Dullea C, Ward J, McGillicuddy K, Murray G, Murphy A, Bradshaw B, Leonard N, Rafter P, McDowell S: Salmonella surveillance in raw and cooked meat and meat products in the Republic of Ireland from 2002 to 2004. Int J Food Microbiol 2006, 112:66–70.PubMedCrossRef 7. Meyer C, Thiel S, Ullrich U, Stolle A: Salmonella in raw meat and by-products from pork and beef. J Food Prot 2010, 73:1780–1784.PubMed 8. Berger CN, Sodha SV, Shaw RK, Griffin PM, Pink D, Hand P, Frankel G: Fresh fruit and vegetables as vehicles for the transmission of human pathogens. Environ Microbiol 2010, 12:2385–2397.PubMedCrossRef 9. Miller ND, Draughon FA, D’Souza DH: Real-time reverse-transcriptase–polymerase chain reaction for Salmonella enterica detection from jalapeno and serrano peppers. Foodborne Pathog Dis 2010, 7:367–373.PubMedCrossRef

10. Tietjen M, Fung DY: Salmonella e and food safety. Crit Rev Microbiol 1995, 21:53–83.PubMedCrossRef 11. Lungu B, Waltman WD, Berghaus RD, Hofacre CL: Comparison of a real-time PCR method with a culture method for the detection of Salmonella enterica serotype enteritidis in naturally contaminated environmental samples from integrated poultry houses. J Food Prot 2012, 75:743–747.PubMedCrossRef 12. Mansfield LP, Forsythe SJ: The detection of Salmonella using a combined Oxymatrine immunomagnetic separation and ELISA end-detection procedure. Lett Appl Microbiol 2000, 31:279–283.PubMedCrossRef 13. Eriksson E, Aspan A: Comparison of culture, ELISA and PCR techniques for Salmonella detection in faecal samples for cattle, pig and poultry. BMC Vet Res 2007, 3:21.PubMedCentralPubMedCrossRef 14. Malorny B, Lofstrom C, Wagner M, Kramer N, Hoorfar J: Enumeration of Salmonella bacteria in food and feed samples by real-time PCR for quantitative microbial risk assessment. Appl Environ Microbiol 2008, 74:1299–1304.PubMedCentralPubMedCrossRef 15. Wolffs PF, Glencross K, Thibaudeau R, Griffiths MW: Direct quantitation and detection of Salmonella e in biological samples without enrichment, using two-step filtration and real-time PCR. Appl Environ Microbiol 2006, 72:3896–3900.

Nanotechnology 2010, 21:255101 CrossRef 49 Jin Z, Hildebrandt

Nanotechnology 2010, 21:255101.CrossRef 49. Jin Z, Hildebrandt N: Semiconductor quantum dots for in vitro diagnostics and cellular imaging. Trends Biotechnol 2012, 30:394.CrossRef 50. Mazumder S, Dey R, Mitra MK, Mukherjee S, Das GC: Review: biofunctionalized quantum dots in biology and medicine. J Nanomater 2009, 647:14. 51. Preus S, Wilhelmsson LM: Advances in quantitative FRET-based methods for studying nucleic acids. Chembiochem 1990, 2012:13. 52. Frasco MF, Chaniotakis N: Semiconductor quantum dots in chemical sensors and biosensors. Sensors (Basel) 2009, 9:7266.CrossRef 53. Abu-Salah KM, Alrokyan SA, Khan MN, Ansari AA: The electrochemical applications of quantum dots, nanomaterials as analytical tools for genosensors. Sensors (Basel) 2010, 10:963.CrossRef 54. Algar WR, Susumu K, Delehanty JB, Medintz IL: Semiconductor quantum dots in bioanalysis: crossing the valley of death. Anal Chem 2011, 83:8826.CrossRef 55. Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, Samiei M, Kouhi M, Nejati-Koshki K: Liposome: classification, preparation, and applications. Nanoscale Res Lett 2013, 8:102.CrossRef 56. He J, Evers DL, O’Leary TJ, Mason JT: Immunoliposome-PCR: a generic ultrasensitive quantitative antigen detection system. ISRIB purchase J Nanobiotechnology 2012, 10:26.CrossRef 57. Tarn MD, Pamme

N: Microfluidics, reference module in chemistry, molecular sciences and chemical engineering. Elsevier 2013.–0-12–409547–2.05351–8 58. Kumar S, Kumar S, Ali MA, Anand P, Agrawal VV, John R, Maji S, Malhotra BD: Microfluidic-integrated biosensors: prospects for point-of-care diagnostics. Biotechnol J 2013. doi: 10.1002/biot.201200386 59. Rivet C, Lee H, Hirsch A, Hamilton S, Lu H: Microfluidics for medical diagnostics Dapagliflozin and biosensors. Chem Eng Sci 2011, 66:1490.CrossRef 60. Duan N, Ding X, He L, Wu S, Wei Y, Wang Z: Selection, identification and application of a DNA aptamer against Listeria monocytogenes. Food Control 2013, 33:239.CrossRef 61. Jayasena SD: Aptamers: an emerging class

of molecules that rival antibodies in diagnostics. Clin Chem 1999, 45:1628. 62. Jenison RD, Gill SC, Pardi A, Polisky B: High-resolution molecular discrimination by RNA. Science 1994, 263:1425.CrossRef 63. Šmuc T, Ahn IY, Ulrich H: Nucleic acid aptamers as high affinity ligands in biotechnology and biosensorics. Pharm Biomed Anal 2013, 81–82:210. 64. Thierry B, Kurkuri M, Shi JY, Lwin LE, Palms D: Herceptin functionalized microfluidic polydimethylsiloxane devices for the selleck products capture of human epidermal growth factor receptor 2 positive circulating breast cancer cells. Biomicrofluidics 2010, 4:32205.CrossRef 65. Pritchard S, Wick HC, Slonim DK, Johnson KL, Bianchi DW: Comprehensive analysis of genes expressed by rare microchimeric fetal cells in the maternal mouse lung. Biol Reprod 2012, 87:42.CrossRef 66.

mimicus strains, we compared the cytotoxicity of the wild-type an

mimicus strains, we compared the cytotoxicity of the wild-type and mutant strains for cultured cell lines. T3SS-deficient mutants were constructed by disruption of the homologue of the vscN2 gene, which encodes an ATPase of

T3SS2, in V. mimicus RIMD2218042 (α type) and RIMD2218067 (β type) strains. To confirm the deletion of the vscN2 gene, PCR amplification using oligonucleotide primer pairs was performed (see Additional file 1 and 8). The growth of the mutant strains MX69 in LB medium (1% NaCl) was indistinguishable from that of the parental strains (data not shown). Both V. mimicus RIMD2218042 and RIMD2218067 strains were cytotoxic for Caco-2 cells at 3 h post-infection. The cytotoxicity of both the T3SS2α- and T3SS2β-deficient mutant strains tended to decrease, but there were no significant differences between T3SS2α- and T3SS2β-deficient mutant strains and their parental strains (see Additional file 9). Discussion A recent study of ours demonstrated that two lines of distinct lineage of the T3SS2 gene cluster, T3SS2α and T3SS2β, are ARS-1620 purchase present in the KP-positive and trh-positive V. parahaemolyticus strains, respectively C59 purchase [20]. Although a previously reported study using dot blot

analysis could not detect the genes for T3SS2 in 16 Vibrio species, the probes and PCR primers used in previous studies were designed based on the sequence information of the T3SS2α genes in V. parahaemolyticus strain RIMD2210633 [7, 14]. Since the T3SS2β genes cannot be detected by either PCR amplifications or comparative genomic hybridization analysis targeting the T3SS2α genes [7, 15], we re-investigated the distribution of the T3SS2 genes, both T3SS2α and T3SS2β, in Vibrio species. To examine the distribution of the genes for T3SS2 in vibrios other than V. parahaemolyticus, we performed a PCR assay using PCR primer pairs targeting both the T3SS2α and T3SS2β genes. Of the 32 Vibrio species tested, the T3SS2-related genes were detected in three species, V. cholerae, which was previously reported, as well as V. hollisae and V. mimicus. In V. hollisae strains, only three genes for T3SS2α, Lepirudin vscN2, vscR2, and vscT2, were detected. Nevertheless,

the fact that the PCR reactions for these three genes were positive in all the five V. hollisae strains tested is intriguing. We speculate that the other genes for T3SS2α might be absent in these particular V. hollisae strains, or that the sequences of the other genes included variations that would make PCR amplification with the primer pairs used in this assay difficult. These possibilities should be examined in the future by more detailed genetic analyses, e.g. sequencing of the region flanking the T3SS2-related genes. A previous study showed that the T3SS2-related genes are present in V. mimicus strains [25]. In our study, the PCR assay also demonstrated the presence of the T3SS2 genes in V. mimicus strains. Of the 15 V.

Wen LM, Xu P, Benegal G, Carvaho MR, Butler DR, Buck GA: Trypanos

Wen LM, Xu P, Benegal G, Carvaho MR, Butler DR, Buck GA: Trypanosoma cruzi: exogenously regulated gene expression. Exp Parasitol 2001,97(4):196–204.PubMedCrossRef 17. Clayton CE: Life without transcriptional control? From fly to man and back again. EMBO J 2002,21(8):1881–1888.PubMedCrossRef 18. Martinez-Calvillo S, Yan S, Nguyen D, Fox M, Stuart K, Myler PJ: Transcription of Leishmania major Friedlin chromosome 1 initiates in both directions within a single region. Mol Cell 2003,11(5):1291–1299.PubMedCrossRef 19. Tyler-Cross RE, Short SL, Floeter-Winter LM, Buck GA: Transient expression selleck compound mediated by the Trypanosoma cruzi rRNA promoter. Mol Biochem Parasitol 1995,72(1–2):23–31.PubMedCrossRef 20. Biebinger S, Clayton C: A plasmid shuttle

vector bearing an rRNA promoter is extrachromosomally maintained in Crithidia fasciculata. Exp Parasitol 1996,83(2):252–258.PubMedCrossRef 21. Vazquez MP, Levin MJ: Functional analysis of the intergenic click here regions of TcP2beta gene loci allowed the construction of an improved Trypanosoma cruzi expression vector. Gene 1999,239(2):217–225.PubMedCrossRef 22. Biebinger S, Wirtz LE, Lorenz P, Clayton C: Vectors for inducible expression of toxic gene products in bloodstream and procyclic Trypanosoma brucei. Mol Biochem Parasitol 1997,85(1):99–112.PubMedCrossRef 23. Wickstead B, Ersfeld K, Gull K: Targeting of a tetracycline-inducible expression system to the transcriptionally silent minichromosomes

of Trypanosoma brucei. Mol Biochem Parasitol 2002,125(1–2):211–216.PubMedCrossRef 24. Yan S, Martinez-Calvillo S, Schnaufer

A, Sunkin S, Myler PJ, Stuart K: A low-background AZD8186 solubility dmso inducible promoter system in Leishmania donovani. Mol Biochem Parasitol 2002,119(2):217–223.PubMedCrossRef 25. Kushnir S, Gase K, Breitling R, Alexandrov K: Development of an inducible protein expression system based on the protozoan host Leishmania tarentolae. Protein Expr Purif 2005,42(1):37–46.PubMedCrossRef 26. Yao C, Luo J, Hsiao CH, Donelson JE, Wilson ME: Leishmania chagasi: a tetracycline-inducible cell line driven by T7 RNA polymerase. Exp Nintedanib in vivo Parasitol 2007,116(3):205–213.PubMedCrossRef 27. Zhu H, Bilgin M, Bangham R, Hall D, Casamayor A, Bertone P, Lan N, Jansen R, Bidlingmaier S, Houfek T, et al.: Global analysis of protein activities using proteome chips. Science 2001,293(5537):2101–2105.PubMedCrossRef 28. Au K, Berrow NS, Blagova E, Boucher IW, Boyle MP, Brannigan JA, Carter LG, Dierks T, Folkers G, Grenha R, et al.: Application of high-throughput technologies to a structural proteomics-type analysis of Bacillus anthracis. Acta Crystallogr D Biol Crystallogr 2006,62(Pt 10):1267–1275.PubMedCrossRef 29. Liu Q, Li MZ, Leibham D, Cortez D, Elledge SJ: The univector plasmid-fusion system, a method for rapid construction of recombinant DNA without restriction enzymes. Curr Biol 1998,8(24):1300–1309.PubMedCrossRef 30. Abremski K, Hoess R: Bacteriophage P1 site-specific recombination. Purification and properties of the Cre recombinase protein.

Figure 3 XPS narrow scans of Sn 3 d 5/2 core-level In-Sn-O nanost

Figure 3 XPS narrow scans of Sn 3 d 5/2 core-level In-Sn-O nanostructures. (a) Sample 1, (b) sample 2, and (c) sample 3. Figure 4 XPS narrow scans of In 3 d core-level doublet of In-Sn-O nanostructures. (a) Sample 1, (b) sample 2, and (c) sample 3. Figure 5 XPS narrow scans of O 1  s core level of In-Sn-O nanostructures. (a) Sample 1, (b) sample 2, and (c) sample 3. Figure 6a shows a low-magnification TEM image of sample 1, which exhibits several nanostructures. Each individual

nanostructure was capped with check details a clear spherical particle. EDX analyses of the particle and stem showed that this particle was composed mainly of Sn (69.4 at.%) and considerably small amounts of In (2.5 at.%) and O (28.1 at.%). Moreover, the stem of the nanostructure consisted mainly of In (44.4 at.%) and O (53.6 at.%) and a small amount of Sn (2.0 at.%). The analyses of the composition revealed that the O content of the stem was below the stoichiometric value of In2O3, which is consistent with the XPS O 1 s analysis. The presence of Sn-rich particles at the ends of the nanostructures indicated that the vapor–liquid-solid (VLS) process might be

crucial for crystal growth. Several studies on the synthesis of In2O3 nanostructures have shown the importance of the Au catalytic layer for the formation of In2O3 nanostructures [23]. Most of the catalytic JNJ-26481585 manufacturer growth of oxide nanostructures through vapor transport follows a VLS crystal growth process [24]. In this work, no metallic thin layer was pre-deposited onto the substrates to act as a catalyst for nanostructure growth. Recently, a self-catalyst VLS growth mechanism see more was proposed to explain the growth of Mg-doped ZnO nanostructures

and Zn-Sn-O nanowires [25, 26]. The origin of the metallic Sn particles at the ends of our nanostructures might thus be similar to those of previously reported nanostructures. The selected TEM image taken from the corner of the particle-stem Bcl-w region of Figure 6b reveals a non-zero conical angle, demonstrating that the nanostructure geometry ended at a decreasing radius during growth (inset 1 in Figure 6b). The HRTEM image in Figure 6b shows clear lattice fringes corresponding to the (200) plane, which is perpendicular to the stem axis, of the cubic In2O3 structure. The sharp and bright spots in the selected area electron diffraction (SAED) pattern taken along the [001] zone axis show that the nanostructure was single crystalline and grew along the [100] axis (inset 3). Moreover, the SAED pattern of the particle could be indexed along the [010] zone axis of Sn (inset 4). The HRTEM image taken from the interface of particle and stem reveals a thin transition layer with a thickness of approximately 5 nm at the interface (inset 5). Below this transition layer, ordered lattice fringes of (200) for In2O3 were observed over the entire stem.

In this investigation, it is experimentally confirmed that interf

In this investigation, it is experimentally confirmed that interfacial compressive stress in nanoscale can induce the martensitic transformation in FeNi nanolayers. Generally, within the nanostructured materials, a large Emricasan amount of interfacial stress could exist owing to the high volume fraction of interfaces, which might modulate the martensitic transformation of the nanostructured

materials and make the martensitic transformation behaviors in the nanostructured materials differ from their conventional coarse-grained eFT508 cost counterparts. Utilizing the nanomultilayered structure, the interfacial compressive or tensile stress can be imposed on the different nanofilms and the influence of the interfacial compressive or tensile stress on the martensitic transformation

and even other phase transformations of nanofilms can be experimentally investigated. Therefore, the method of imposing and modulating the interfacial stress through the epitaxial growth structure in the nanomultilayered films should also be noticed and utilized. Conclusions In summary, FeNi/V nanomultilayered films with different V layer thicknesses were synthesized by magnetron sputtering. By adjusting the thickness of the V layer, different interfacial compressive stress were imposed on FeNi layers and the effect of interfacial stress on martensitic transformation in the FeNi film was investigated. Without insertion of V layers, the FeNi film exhibits a fcc structure. With the thickness of V inserted layers up to 1.5 nm, under Arachidonate 15-lipoxygenase the coherent growth structure in FeNi/V nanomultilayered films, FeNi layers bear interfacial compressive stress due to the larger lattice parameter relative to V, which induces the MEK inhibitor martensitic transformation of the FeNi film. As the V layer thickness increases to 2.0 nm, V layers cannot keep the coherent growth structure with FeNi layers, leading to the disappearance of interfacial stress and termination of the martensitic transformation in FeNi films. This investigation verifies that the martensitic transformation

could be induced by the nanoscaled interfacial stress in the FeNi nanofilms. The method of imposing and modulating the interfacial stress through the epitaxial growth structure in the nanomultilayered films should also be especially noticed and utilized. Acknowledgements The present work was financially supported by the National Natural Science Foundation of China under Grant No. 51101101, ‘Innovation Program of Shanghai Municipal Education Commission’ under Grant No. 12YZ104, and ‘Shanghai Leading Academic Discipline Project’ under Grant No. J50503 sponsored by the Shanghai Municipal Education Commission. References 1. Qin W, Nagase T, Umakoshi Y: Phase stability in nanocrystalline metals, a thermodynamic consideration. J Appl Phys 2007, 102:124303–124310. 10.1063/1.2822473CrossRef 2. Rong YH: Phase transformations and phase stability in nanocrystalline materials. Curr Opin Solid State Mater Sci 2005, 9:287–295. 10.1016/j.cossms.