85 W/m∙K at 300 K). This might be caused by https://www.selleckchem.com/products/Pazopanib-Hydrochloride.html significant scattering of phonons, charge carriers, and bipolar diffusion as the neck size decreases. Acknowledgments This study was supported by a grant from the Global Excellent Technology Innovation R&D Program funded by the Ministry of Knowledge Economy, Republic of Korea (10038702-2010-01) and the
Basic Science Research Lazertinib cell line Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2013–050316, P.I. S.K.L). This work was also supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD, NRF-2006-352-D00051) and partially supported by Chung-Ang University Research Grants in 2013. References 1. Lim JW, Hippalgaonkar
K, Andrews SC, Majumdar A, Yang PD: Quantifying surface roughness effects on phonon transport in silicon nanowires. Nano Lett 2012, 12:2475.CrossRef 2. Harman TC, Taylor PJ, Walsh MP, LaForge BE: Quantum dot superlattice thermoelectric materials and devices. Science 2002, 297:2229.CrossRef 3. Hsu KF, Loo S, Guo F, Chen W, Dyck JS, Uher C, Hogan T, Polychroniadis EK, Kanatzidis MG: Cubic AgPb m SbTe 2+m : bulk thermoelectric materials with high figure of merit. Science 2004, 303:818.CrossRef 4. DiSalvo FJ: Thermoelectric cooling and power generation. Science 1999, 285:703.CrossRef 5. Majumdar A: Thermoelectricity in semiconductor nanostructures. Science 2004, 303:777.CrossRef 6. Yang JY, Aizawa T, Yamamoto A, Ohta T: Thermoelectric properties of n-type (Bi 2 Se 3 ) x (Bi 2 Te 3 ) 1−x prepared by bulk mechanical alloying and NCT-501 in vivo hot pressing. J Alloy Compd 2000, 312:326.CrossRef 7. Gallo CF, Chandrasekhar BS, Sutter PH: Transport properties of bismuth single crystals. J Appl Phys 1963, 34:144.CrossRef 8. Shi L, Hao Q, Yu CH, Mingo N, Kong XY, Wang ZL: Thermal conductivities
of individual tin dioxide nanobelts. Appl Phys Lett 2004, 84:2638.CrossRef 9. Li DY, Wu YY, Kim P, Shi L, Yang PD, Majumdar A: Thermal conductivity of individual silicon nanowires. Appl Phys Lett 2003, 83:2934.CrossRef PD184352 (CI-1040) 10. Wang JA, Wang JS: Carbon nanotube thermal transport: ballistic to diffusive. Appl Phys Lett 2006, 88:111909.CrossRef 11. Bryning MB, Milkie DE, Islam MF, Kikkawa JM, Yodh AG: Thermal conductivity and interfacial resistance in single-wall carbon nanotube epoxy composites. Appl Phys Lett 2005, 87:161909.CrossRef 12. Vavro J, Llaguno MC, Satishkumar BC, Luzzi DE, Fischer JE: Electrical and thermal properties of C 60 -filled single-wall carbon nanotubes. Appl Phys Lett 2002, 80:1450.CrossRef 13. Tang JY, Wang HT, Lee DH, Fardy M, Huo ZY, Russell TP, Yang PD: Holey silicon as an efficient thermoelectric material. Nano Lett 2010, 10:4279.CrossRef 14. Yu JK, Mitrovic S, Tham D, Varghese J, Heath JR: Reduction of thermal conductivity in phononic nanomesh structures. Nat Nanotechnol 2010, 5:718.CrossRef 15.