TBARS concentration was based on the molar extinction coefficient

TBARS concentration was based on the molar extinction coefficient of malondialdehyde. Antioxidant capacity (DPPH assay) Antioxidant substances of the serum were determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical assay [22, 23]. Protein from serum samples (200 μL) was removed with acetonitrile (200 μL). Serum supernatant (learn more without protein) was mixed with 970 μL of CH3OH

and 5 μL of DPPH (10 mM in methanol), and rested at room temperature for 20 min, and centrifuged for 10 min at 10,000 rpm at 4°C. Absorbance of the supernatant was determined at 517 nm. Statistical analyses Data were presented as means ± SD. Statistical GS-1101 analyses were done by Sigma Stat 3.1 software. Statistical comparisons of the groups were made by ANOVA One

Way, followed by post hoc Tukey test for parameters with normal distribution, tested by Kolmogorov-Smirnov, or Student-Newman-Keuls for non-normal data. P value less than 0.05 was considered significant. Results Body weight and weight gain during the experimental period There was no statistical difference in initial body weight, final body weight and weight gain between C and NSC 683864 cell line CH groups, and among the swimming groups, with or without hesperidin (CS, IS, CSH, ISH). But, the animals submitted to swimming (CS, IS, CSH, ISH) showed higher final body weight and weight gain in comparison to the animals without swimming (C and CH) (P < .05) (Table 1). Table 1 Body weight of rats submitted to continuous or interval swimming with or without supplement Body weight Group name # C CH CS CSH IS ISH (n) (10) (10) (10) (10) (10) (10) Initial, g 408 ± 8.5 413 ± 4.1 404 ± 7.7 409 ± 16 413 ± 13 405 ± 4.1 Final, g 460 ± 19a 464 ± 9.8a 428 ± 7.6b 434 ± 19b 435 ± 7.8b 427 ± 11b Weight Gain, g 52.0 ± 13.4a 51.4 ± 12.2a 24.0 ± 11.6b 25.3 ± 17.0b 21.8 ± 13.9b 22.0 ± 18.2b # C negative control, CH positive control, CS continuous swimming, Levetiracetam CSH continuous swimming + hesperidin, IS interval swimming, ISH interval swimming + hesperidin. Results are expressed as mean ± SD. a, b Statistical differences among groups, indicated

by different letters, were tested by Anova One Way, followed by Tukey test (P < 0.05). Glucose There was a continuous decline of the serum glucose levels from the negative control group to the interval swimming group, as follow: negative control (C) > positive control (CH) > continuous swimming (CS) > continuous swimming + hesperidin (CSH) > interval swimming (IS) > interval swimming + hesperidin (ISH); suggesting a combined effect of hesperidin with swimming on the serum glucose. Statistically, glucose levels are higher for the C group, and lower for the ISH group, and all other groups with interval values (Table 2). Table 2 Biochemical biomarkers of rats submitted to continuous or interval swimming with or without supplement Group name # C CH CS CSH IS ISH (n) (10) (10) (10) (10) (10) (10) Glucose, mg/dL 93.9 ± 4.4a 91.2 ±2.5ab 88.

Comments are closed.