Among these, Cthe0140 had maximal expression throughout the fermentation, Cthe1292 and Cthe0946 displayed regulated expression, while the other four copies displayed relatively minimal expression see more during cellulose
fermentation (Figure 4). Figure 4 Expression of genes involved in cellodextrin transport and catabolism during cellulose fermentation. Schematic representation of cellulose degradation by cell surface attached cellulosomal complex, transport of cellodextrin hydrolysis products into the cell by ABC sugar transporters and intracellular catabolism of glucose to various metabolic end-products. Heat plot representation of transcript expression [as Log2 (array signal intensity)] for genes (known and putative) involved in cellodextrin transport and hydrolysis, pentose phosphate pathway, glycolytic conversion of glucose to pyruvate and anaerobic fermentation of pyruvate to organic acids (formate, lactate, acetate) and ethanol, over the course of Avicel® fermentation by Clostridium thermocellum ATCC 27405. Cellulosome schematic is an adaptation of the image from the U.S. Department of Energy Genome Programs website
image gallery (http://genomics.energy.gov; HKI-272 mw [40]);one black circle – Cthe0506 is pfl-activating enzyme; two black circles – Cthe0423 encodes a bi-functional acetaldehyde/alcohol dehydrogenase enzyme involved in direct conversion of acetyl-CoA to ethanol; open diamond – Microarray data is not available. The pentose phosphate pathway is important for production and supply of key intermediates involved in the synthesis of nucleotides and aromatic amino acids. The C. thermocellum genome
encodes several IWP-2 in vitro enzymes in the non-oxidative branch of the Pentose Phosphate (PP) pathway including ribulose-5-P isomerase (Cthe2597) and ribulose-5-P epimerase (Cthe0576) (Figure 4, Additional file 4). During cellulose fermentation, the epimerase gene was downregulated by up to 2-fold in stationary phase, while the isomerase gene was selleck screening library expressed at high levels throughout the course of the fermentation. C. thermocellum also has two pairs of contiguous genes encoding transketolases (Cthe2443-44 and Cthe2704-05) which catalyze several reactions in the PP pathway, of which only the Cthe2704-05 pair shows maximal expression during cellulose fermentation (Figure 4). Sequence homology-based annotation has however not revealed a transaldolase in C. thermocellum. Downstream of phosphoenolpyruvate Similar to glycolytic enzymes, a majority of the genes involved in conversion of phosphoenolpyruvate to pyruvate and mixed-acid fermentation of pyruvate to various organic acids and ethanol were downregulated during stationary phase of C. thermocellum growth on cellulose (Figure 4, Additional file 5: Expression of genes downstream of PEP). Several Gram-positive organisms, including representatives in the Clostridial species such as C. phytofermentans and C.