Copyright (C) 2010 S. Karger AG, Basel”
“Motivational biases and spatial attention
both modulate neural activity and influence behavioural performance. The time course of motivational bias effects, as well as the relationship between motivation and attention across the time course of information processing, however, are relatively unknown. In the present study, event-related potentials (ERPs) were recorded whilst individuals performed a modified Posner task, in which cue stimuli indicated the reward stakes of a given trial and the probable spatial location of a subsequent target stimulus. Reaction times (RTs) were sensitive to motivation and to attention, with faster responses produced
Mocetinostat solubility dmso on valid and on rewarded trials. In addition, motivation modulated neural activity from the visual analysis of stimuli, with an earlier N1 peak for rewarded compared with Savolitinib cell line non-rewarded stimuli. Effects of motivation were relatively independent from those of attention until late cognitive processing and response production, where motivation and attention interacted to enhance P300-like potentials and the lateralised readiness potential (LRP). The results suggest that multiple sources of modulatory influences may exist, with motivation and attention exerting independent influences over early stimulus and cognitive processing, followed by a late interaction allowing the construction Idoxuridine of a comprehensive stimulus representation that contains information pertaining to both motivational and spatial expectations. (C) 2011 Elsevier Ltd. All rights reserved.”
“Background/Aims: The mechanisms that regulate the size-related morphologies of various blood vessels from the aorta to capillary
vessels are still poorly understood. In this study, we evaluate the involvement of regulator of calcineurin 1 (RCAN1), a regulatory protein in the calcineurin/NFAT signal transduction pathway, in vascular morphology to gain further insight into these mechanisms. Methods and Results: We first generated 2 types of vasculature in vitro from the same source of human umbilical vein endothelial cells by fibrin gel assay. We found that RCAN1 was significantly up-regulated in large vessels with low branching frequencies when compared with small vessels with high branching frequencies. Next, to clarify whether RCAN1 regulates the branching of blood vessels in vivo, we injected RCAN1 mRNA into fertilized Xenopus laevis eggs. Overexpression of RCAN1 decreased the number of branching points that sprouted from intersomitic vessels during X. laevis angiogenesis. In addition, coexpression of calcineurin A, a target of RCAN1,could rescue RCAN1-suppressed vascular branching.