The expression
of HSP70 induced by MK-801 significantly decreased as the duration of haloperidol pretreatment was extended (p=0.002). Risperidone also increasingly attenuated the expression of HSP70 produced by MK-801 as the duration of pretreatment grew longer (p=0.003). The present findings show that haloperidol and risperidone decrease the HSP70 expression in MK-801-treated rat C6 glioma cells. These results suggest that HSP70 and NMDA receptors may play a significant role in the pathophysiology of schizophrenia. (c) 2008 Elsevier Inc. All rights reserved.”
“Human coronaviruses (HCoV) are recognized respiratory pathogens, and some strains, including HCoV-OC43, can infect human neuronal and glial cells of the central nervous system (CNS) and activate neuroinflammatory mechanisms. Moreover, Alisertib in vivo HCoV-OC43 is neuroinvasive,
KU-60019 molecular weight neurotropic, and neurovirulent in susceptible mice, where it induces chronic encephalitis. Herein, we show that a single point mutation in the viral spike (S) glycoprotein (Y241H), acquired during viral persistence in human neural cells, led to a hind-limb paralytic disease in infected mice. Inhibition of glutamate excitotoxicity using a 2-amino-3-(5-methyl-3-oxo-1,2-oxazol4-yl) propranoic acid (AMPA) receptor antagonist (GYKI-52466) improved clinical scores related to the paralysis and motor disabilities in S mutant virus-infected mice, as well as protected the CNS from neuronal dysfunctions, as illustrated by restoration of the phosphorylation state of neurofilaments. Expression of the
glial glutamate transporter GLT-1, responsible for glutamate homeostasis, was downregulated following infection, and GYKI-52466 also significantly restored its steady-state expression level. Finally, GYKI-52466 treatment of S mutant virus-infected mice led to reduced microglial activation, which may lead to improvement in the regulation Racecadotril of CNS glutamate homeostasis. Taken together, our results strongly suggest an involvement of excitotoxicity in the paralysis-associated neuropathology induced by an HCoV-OC43 mutant which harbors a single point mutation in its spike protein that is acquired upon persistent virus infection.”
“Type I interferon (IFN) induction is a crucial anti-pathogen response mediated by innate immune stimulation. Although it has been appreciated for some time that the presence of pathogen DNA within a cell leads to a type I IFN response, it is only in the past few years that some of the key signalling proteins and DNA sensors that regulate this response have been uncovered.