“
“The fundamental task of the immune system is to protect the individual from infectious organisms without serious injury to self. The essence of acquired immunity is molecular self/non self discrimination. Chronic lymphocytic leukemia is characterized by a global failure of immune system that begins with the failure of immunological tolerance mechanisms (autoimmunity) and finish with the incapacity to response to
non-self antigens (immunodeficiency). Immunological tolerance mechanisms are involved in chronic lymphocytic leukemia (CLL) development. During click here B cell development some self-reactive B cells acquire a special BCR that recognize their own BCR. This self-autoantibody-self BCR interaction promotes survival, differentiation and proliferation of self-reactive B cells.
Continuous self-autoantibody-self BCR interaction cross-linking induces an increased rate of surface BCR elimination, CD5+ expression, receptor editing and anergy. Unfortunately, some times this mechanisms increase genomic instability and promote additional genetic damage that immortalize self-reactive B cells and convert them into CLL like clones with the capability of clonal evolution and transformed CLL B cells. This review summarizes the immunological VX-661 solubility dmso effects of continuous self-autoantibody-self BCR interaction cross-linking in the surface of self-reactive B cells and their role in CLL development. (C) 2014 Elsevier Ltd. All rights reserved.”
“Cell therapy is a field of growing interest in the prevention of post acute myocardial infarction (AMI) heart failure. Stem cell retention upon local delivery to the heart, however, is still unsatisfactory. Cell Beads were recently developed as a potential solution to this problem. Cell Beads are 170-mu m alginate microspheres that contain mesenchymal stem cells (MSCs) genetically modified to express glucagon-like peptide-1 (GLP-1) supplementary to inherent paracrine factors. GLP-1 is an incretin hormone that has both antiapoptotic AL3818 and cardioprotective effects. Transplanting Cell Beads in the post-AMI heart might induce cardiomyocyte salvage and ultimately
abrogate adverse cardiac remodeling. We aimed to investigate the feasibility of intracoronary infusion of Cell Beads in a large animal model of AMI. Four pigs were used in a pilot study to assess the maximal safe dose of CellBeads. In the remaining 21 animals, an AMI was induced by balloon occlusion of the left circumflex coronary artery for 90 min. During reperfusion, 60,000 CellBeads (n=11), control beads (n=4), or lactated Ringers’ (n=6) were infused. Animals were sacrificed after 2 or 7 days, and the hearts were excised for histological analyses. Intracoronary infusion did not permanently affect coronary flow in any of the groups. Histological analysis revealed CellBeads containing viable MSCs up to 7 days.