The work further emphasizes the critical role of synaptic plasticity and memory in not only odor memory but also basic odor perception. The work also suggests a possible link between sleep disturbances that are frequently co-morbid with a wide range of pathologies including Alzheimer’s disease, schizophrenia and depression and the
known olfactory impairments associated with those disorders.”
“The structure and function of biological systems, for example, cells and proteins, depend strongly on their chemical environment. To investigate such dependence, we design a polydimethylsiloxane-based microfluidic device to encapsulate biological systems in picoliter-sized drops. The content of each individual drop is tuned in a defined manner. As a key feature of our method, Selleck LB-100 the individual chemical composition is determined and related to the drop content. In our case, the drop content is imaged using microscopy methods, while the drops are immobilized to allow for long-time studies. As an application of our device, we study the influence of divalent
ions on vimentin intermediate filament networks in a quantitative way by tuning the magnesium concentration from drop to drop. This way we are able to directly image the effect of magnesium on the fluorescently tagged protein in a few hundreds of drops. Our this website study shows that with increasing magnesium concentration in the drops, the compaction of the networks becomes Lonafarnib more pronounced. The degree of compaction is characterized by different morphologies; freely fluctuating networks are observed at comparatively low magnesium concentrations of 5-10 mM, while with increasing magnesium concentration reaching 16 mM they develop into fully aggregated networks. Our approach demonstrates how a systematic study of interactions in biological systems can benefit
from the exceptional controllability of microfluidic methods. (C) 2012 American Institute of Physics. [http://dx.doi.org.elibrary.einstein.yu.edu/10.1063/1.4705103]“
“Cardiac tissue engineering aims to create functional tissue constructs that can reestablish the structure and function of injured myocardium. Engineered constructs can also serve as high-fidelity models for studies of cardiac development and disease. In a general case, the biological potential of the cell-the actual “”tissue engineer”-is mobilized by providing highly controllable three-dimensional environments that can mediate cell differentiation and functional assembly. For cardiac regeneration, some of the key requirements that need to be met are the selection of a human cell source, establishment of cardiac tissue matrix, electromechanical cell coupling, robust and stable contractile function, and functional vascularization. We review here the potential and challenges of cardiac tissue engineering for developing therapies that could prevent or reverse heart failure.