6 ± 4.4 44.9 ± 4.7 44.4 ± 4.9 0.773 0.766 Cortical volumetric density (mg/cm3) 1,168 ± 16 1,164 ± 18 1,156 ± 20A,B <0.001 <0.001 Radial diaphysis Cortical cross-sectional area (mm2) 95.8 ± 11.4 98.9 ± 11.1 100.3 ± 10.0A 0.005 0.007 Cortical periosteal circumference (mm) 41.4 ± 2.6 42.2 ± 2.6a 42.6 ± 2.5A 0.001 0.002 Cortical GSI-IX research buy volumetric density (mg/cm3) 1,194 ± 16 1,188 ± 16a
1,190 ± 17 0.008 0.006 Tibial metaphysis Trabecular bone volume fraction (%)b 17.6 ± 2.5 17.5 ± 2.6 20.2 ± 2.4A,B <0.001 <0.001 Trabecular number (mm−1)b 2.07 ± 0.23 2.04 ± 0.26 2.23 ± 0.24A,B <0.001 <0.001 Trabecular volumetric density (mg/cm3)b 211.7 ± 30.3 210.6 ± 31.7 242.7 ± 28.6A,B <0.001 <0.001 Trabecular separation (mm)b 0.41 ± 0.06 0.41 ± 0.06 0.36 ± 0.05A,B <0.001 <0.001 Trabecular thickness
(μm)b 85.8 ± 10.5 86.7 ± 11.6 91.2 ± 9.6A,b 0.001 0.025 Cortical volumetric density (mg/cm3)b 873 ± 29 867 ± 30 873 ± 27 0.243 0.182 Radial SN-38 in vivo metaphysis Trabecular bone volume fraction (%)c 16.2 ± 2.9 16.5 ± 2.8 17.3 ± 2.7a 0.043 0.084 Trabecular number (mm−1)c 2.1 ± 0.2 2.1 ± 0.2 2.1 ± 0.2 0.679 0.673 Trabecular separation (mm)c 0.40 ± 0.06 0.41 ± 0.06 0.40 ± 0.06 0.674 0.620 Trabecular thickness (μm)c 77.3 ± 12.4 79.5 ± 11.9 82.4 ± 12.4a 0.016 0.057 Cortical volumetric density (mg/cm3)c 850 ± 41 840 ± 35 851 ± 35 0.089 0.057 Mean ± SD of bone parameters, adjusted for height and weight, are presented. Differences between groups tested by ANCOVA followed by Tukey’s post hoc test were performed (n = 361). p eFT-508 in vivo values for vs. nonathletic (indicated
by A) and vs. resistance training (indicated by B). Capital and capital bold type letters represent p < 0.01 and p < 0.001, respectively. Lowercase letters represent p < 0.05 ANCOVA1 height and weight as covariates, ANCOVA2 smoking as a covariate a n = 359 b n = 358 c n = 317 Discussion We have previously reported, in a cross-sectional analysis in the GOOD study, that young men who participate in more than 4 h of physical activity per week have higher aBMD and greater cortical bone size than sedentary men of the same age [13]. In the present study, we found that men with soccer as their main sport had higher aBMD and more favorable bone microstructure and 3-mercaptopyruvate sulfurtransferase geometry than men with resistance training as their main sport. Thus, no apparent advantage in aBMD, bone size, or microstructure was seen in resistance training men despite the fact that the mean duration of exercise exceeded 4 h/week and the mean history of activity exceeded 5 years in these men. In contrast, we found that men in the resistance training group had 9.5 % higher grip strength and 5.5 % more lean mass, while men in the soccer-playing group only had more lean mass (9.1 %) than those in the nonathletic group. Hence, resistance training may be effective in increasing muscle mass and strength, but may not substantially improve bone strength.