Phytopathology 98:571–579PubMedCrossRef Gazis R, Rehner S, Chaver

Phytopathology 98:571–579PubMedCrossRef Gazis R, Rehner S, Chaverri P (2011) Species delimitation in fungal endophyte diversity studies and its implications in ecological and biogeographic inferences. Mol Ecol 20(14):3001–3013PubMedCrossRef Giménez-Jaime A, Aroca A, Raposo R, Garcia-Jiménez J, Armengol J (2006) Occurrence of fungal pathogens associated with

grapevine nurseries and the decline of young vines in Spain. J Phytopathol 154:598–602CrossRef Gonzáles V, Tello ML (2010) The endophytic mycota associated with Vitis vinifera in central Spain. Fungal Divers 47(1):29–42CrossRef Gramaje D, Armengol J (2011) Fungal trunk pathogens in the grapevine Selleck PLX3397 propagation process: potential inoculum sources, detection, identification, and management strategies. Plant Dis 95(9):1040–1055CrossRef Gramaje D, Garcia-Jiménez J, Armengol J (2010) Field evaluation of grapevine rootstocks inoculated with fungi associated with Petri disease and esca. Am J Enol Vitic 61(4):512–520CrossRef

find more Graniti A, LY294002 in vivo Surico G, Mugnai L (2000) Esca of grapevine: a disease complex or a complex of diseases? Phytopathol Mediterr 39:16–20 Green F III, Clausen CA (1999) Production of polygalacturonase and increase of longitudinal gas permeability in southern pine by brown-rot and white-rot fungi. Holzforschung 53(6):563–568CrossRef Green F III, Kuster TA, Highley TL (1996) Pectin degradation during colonization of wood by brown-rot fungi. Rec Res Devel Plant Pathol 1:83–93 Guo LD, Hyde KD, Liew ECY (2001) Detection and taxonomic placement of endophytic fungi within front tissues of Livistona chinensis based on rDNA sequences. Mol Phyl Evol 19:1–13CrossRef Halleen F, Crous PW, Petrini O (2003) Fungi associated with healthy grapevine cuttings in nurseries, with special reference to pathogens involved in the decline of young vines. Aust

Plant Pathol 32:47–52CrossRef Halleen F, Fourie PH, Crous P (2006) A review of black foot disease of grapevine. Phytopathol Mediterr 45:S55–S67 Higgins KL, Coley PD, Kursar TA, Arnold AE (2011) Culturing and direct PCR suggest prevalent host generalism among fungal endophytes of Amoxicillin tropical grasses. Mycologia 103(2):247–260PubMedCrossRef Hyde KD, Soytong K (2008) The fungal endophyte dilemma. Fungal Divers 33:163–173 International Organisation of Vine and Wine (2011). State of the vitiviniculture world market. OIV annual report, March. Available: http://​www.​indianwineacadem​y.​com/​2011_​note_​conj_​mars_​EN.​pdf. Accessed 8 March 2012. Ko Ko TW, McKenzie EHC, Bahkali AH, To-anun C, Chukeatirote E, Promputtha I, Abd-Elsalam KA, Soytong K, Wulandari NF, Sanoamuang N, Jonglaekha N, Kodsueb R, Cheewangkoon R, Wikee S, Chamyuang S, Hyde KD (2011) The need for re-inventory of Thai phytopathogens. Chiang Mai J Sci 38(4):1–13 Kuntzmann P, Villaume S, Larignon P, Bertsch C (2010) Esca, BDA and eutypiosis: foliar symptoms, trunk lesions and fungi observed in diseased vinestocks in two vineyards in Alsace.

CrossRef 54 Tans-Kersten J, Huang H, Allen C: Ralstonia solanace

CrossRef 54. Tans-Kersten J, Huang H, Allen C: Ralstonia solanacearum needs motility for invasive virulence on tomato. J Bacteriol 2001, 183:3597–3605.PubMedCrossRef 55. Nanda AK, Andrio E, Marino D, Pauly N, Dunand C: Reactive oxygen species during plant-microorganism early interactions. J Integr Plant Biol 2010, 52:195–204.PubMedCrossRef 56. Sambrook J, Russell DW: Molecular cloning: A laboratory

manual. Cold Spring Harbor Press: 3-MA molecular weight Cold Spring Harbor; 2001. 57. Swarup S, De Feyter R, Lonafarnib ic50 Brlansky RH, Gabriel DW: A pathogenicity locus from Xanthomonas citri enables strains from several pathovars of Xanthomonas campestris to elicit canker-like lesions on citrus. Phytopathology 1991, 81:802–809.CrossRef 58. Gottig N, Garavaglia BS, Garofalo CG, Orellano EG, Ottado J: A filamentous hemagglutinin-like protein of Xanthomonas axonopodis pv . citri , the phytopathogen responsible for citrus canker, is involved in bacterial virulence. PLoS ONE 2009, 4:e4358.PubMedCrossRef

59. Yan Q, Wang N: The ColR/ColS two-component JSH-23 purchase system plays multiple roles in the pathogenicity of the citrus canker pathogen Xanthomonas citri subsp . citri . J Bacteriol 2011, 193:1590–1599.PubMedCrossRef 60. Livak K, Schmittgen T: Analysis of relative gene expression data using real-time quantitative PCR and the 2-DeltaDeltaCT method. Methods 2001, 25:402–408.PubMedCrossRef Authors’ contributions JL and NW conceived and designed the experiments, performed the experiments, CYTH4 analyzed the data and wrote the paper. All authors read and approved the final manuscript”
“Background The Human Microbiome Project has taken a metagenomic approach to identifying the bacteria in a wide variety of sites on and in the human body because the substantial majority of these bacteria have not been grown in culture

[e.g.,[1]. Second generation DNA sequencing on this level presents a formidable informatics challenge. It is unlikely that such sequencing will be useful for individual investigators and clinical diagnostics. Therefore, the challenge is to detect each bacterium in a mixture when all that is known about the bacterium is a partial genome sequence. In a previous publication [2], we presented our adaption of molecular inversion probes [MIP; [3] to detect bacteria using a massively multiplex molecular technology. MIP technology was developed, in large part, to discover and assay single nucleotide polymorphisms in human DNA [4]. The human genome is diploid. Bacterial genomes are haploid, and, therefore, the background for molecular probe technology is significantly lower. Because of this important difference, we simplified the method by dispensing with the “”inversion”". Our method requires only a sequence of forty sequential bases unique to the bacterial genome of interest, such as derived from the sequences produced by the Human Microbiome Project. All necessary reagents are commercially available, including an Affymetrix GenFlex Tag16K array v2 (Tag4 array).